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INTRODUCTION

In this paper we extend the work in [2] on the existence and uniqueness of
hyperbolic splines on RI to double hyperbolic and higher-order generalized
splines, utilizing a new representation of a spline of interpolation, in terms
of several of its unknown derivatives at mesh points, rather than just one.
We also show how this approach may be applied to higher order polynomial
splines on RI. For the standard approach, see [I).

1. DOUBLE HYPERBOLIC AND QUINTIC SPLINES ON RI

In this section we develop a technique, which we introduce by means of a
specific example, for calculating higher-order generalized splines on RI. We
consider the linear differential operator

L = D(D - a)(D - {3), a, {3 eft 0, a eft {3,

and, without loss of generality, we take °< a < {3. We call Six) a double
hyperbolic spline on RI for the uniform mesh L1 = {Xj = jl:j = 0, ±l, ±2,...}
if (i) on each mesh interval [Xj, XJ+I]' Six) satisfies L *LSix) = 0, and
(ii) Six) is C4(RI). Furthermore, SileX) is a double hyperbolic spline of
interpolation if, in addition, (iii) Sixj) = Yi' j = 0, ±1, ±2,oo., for
prescribed interpolation data {Yj}. We have L*L = - D2(D2 - ( 2)(D2 - {32),
so on each mesh interval [Xj , Xj+1]'

Six) = cl
i + c/x + caj sinh ax

+ c4
j cosh ax + c5

j sinh {3x + c6
j cosh {3x.

* This research was supported in part by a National Science Foundation Traineeship
and a University of Michigan-Dearborn Campus Grant.
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Instead of attempting to express SA in terms of S~iV)(Xj) and Yj only, as is
standardly done for the quintic spline [1], we employ two unknowns
M j = S~(Xj) and N j = S~iV)(Xj) in our representation of the double hyperbolic
(and quintic) spline on RI. We get the following equations for the c/,
i = 1, ... , 6,j = 0, ±1, ±2, .. " in terms of {Yj}, {Mj}, {Nj}.

Cl
i + C2

jXj + ca
j sinh OI.Xj + c4

j cosh OI.X; + c5i sinh fJXj + c6
j cosh fJXi = ,V; ,

Cl
i + C2iXHl + ca

j sinh OI.Xj+l + C4 j cosh OI.Xj+l + c5i sinh fJXHl

+ fJ2C6 i cosh fJXHl = Mi+l'

0I.4ca
j sinh OI.Xj + 0I.4C4

i cosh OI.Xj + fJ4C5 i sinh fJXj + fJ4 C6 j cosh fJxi = Ni ,

0I.
4Cai sinh OI.Xj+l + 0I.

4C4
i cosh OI.Xj+l + fJ4C5i sinh fJXi+l

Solution of these results in the following representation for SJ on [Xj, Xi+l].

Six) = Y; ( Xi+l
/
- x ) + Y;+l ( x ~ Xj) + (0I.2fJ2(fJ2 - 01. 2) sinh 01.1 sinh fJl)-I

· M j [_(fJ4 - 01.4) sinh 01.1 sinh fJI ( Xj+l/- x ) + fJ4 sinh fJI

· sinh OI.(xj+l - x) - 01.
4 sinh 01.1 sinh fJ(Xi+l - x)]

+ Mj+l [_(fJ4 - 01.4) sinh 01.1 sinh fJI ( x ~ Xj ) + fJ4 sinh fJI

· sinh OI.(x - Xi) - 01.
4 sinh 01.1 sinh fJ(x - Xj)] (1.2)

+ N j [(fJ2 - 01.2) sinh 01.1 sinh fJI ( Xj+l/- x ) - fJ2 sinh fJI

· sinh OI.(Xi+l - x) + 01.
2 sinh 01.1 sinh fJ(Xi+l - x)]

+ Ni+l [(fJ2 - 01.
2) sinh 01.1 sinh fJI ( x ~ Xj) - fJ2 sinh fJI

· sinh OI.(x - Xj) + 01.
2 sinh 01.1 sinh fJ(x - x;)],

for allj. By definition, Sixj) = Yj and SJ, S~ , and S~iV) are continuous at x; .
The two requirements that SJ' and S~ be continuous at Xj lead to
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two equations in the two unknowns M j , N j for eachj. In matrix form these
become

0 Cl C2 Ca C4 C C2 0 M_1 a-I1

0 dl d2 da d4 dl d2 0 N_1 0
0 Cl C2 Ca C4 Cl C2 0 Mo ao
0 dl d2 da d4 dl d2 0 No 0

(1.3)

where

Cl = [(,84 - ex4) sinh exl sinh ,81 - exl,84 sinh ,81 + ex4,81 sinh exl]/~,

Ca = -2[(,84 - ex4) sinh exl sinh ,81 - exl,84 sinh ,81 cosh exl

+ ex4,81 sinh exl cosh ,8/]/rt',

C2 = [_(,82 - ex2) sinh exl sinh,81 + exl,82 sinh,81 - ex2,81 sinh exl]/rt',

C4 = - 2[_(,82 - ex2) sinh exl sinh ,81 + exl,82 sinh ,81 cosh exl

- ex2,81 sinh exl cosh ,8/]/rt',

~ = ex2,82/2(,82 - ex2) sinh exl sinh ,81,

dl = [-exl,82 sinh ,81 + ex2,81 sinh exl]/~,

da = -2[ -exl,82 sinh,81 cosh exl + ex2,81 sinh exl cosh ,8l]/~,

d2 = [exl sinh ,81 - fJI sinh exl]/~,

d4 = -2[exl sinh fJI cosh exl - ,81 sinh exl cosh fJI]/~,

~ = (,82 - ex2) sinh exl sinh fJI,

and

Representation (1.2) defines a unique double hyperbolic spline of inter­
polation provided only that Eqs. (1.3) define uniquely the M/s and N/s.
Instead of attempting to invert the doubly infinite block Toeplitz matrix
in (1.3), we note that (1.3) is equivalent to the following pair of systems of
equations

Clm + C2D = a,

DIm + D2D = 0,
(1.4)



where

and

m=
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Cl = [... 0 Cl C3 Cl 0 ... ],1

C2 = [... 0 C2 C4 C2 0 '''],

Dl = [... 0 dl d3 dl 0 '''],

D2 = [... 0 d2 d4 d2 0 "'],
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We attempt to solve this system for the unknowns m, n by means of
substitution. We recall an important theorem on the invertibility of doubly
infinite Toeplitz matrices. Consider the Toeplitz matrix

[ Co C-l C- 2

:]Cl Co C- 1

C2 C1 Co

and define r/J«(J) = L:~-oo cneint. If the Cn are such that r/J is a bounded
function, then we have

THEOREM 1.1. T<b is invertible if IN is essentially bounded. If Til exists,
it satisfies 1';1 = T1 /<b where Tl/<b is the Toeplitz matrix defined by the sequence
ofFourier coefficients of IN [5].

First we note that

THEOREM 1.2. D2 is invertible for all fJ > ct > O.

For the proof of this we require the following.

LEMMA 1.3. If Y > x then (i) y sinh x cosh y > x sinh y cosh x and
(ii) x sinh y > Y sinh x, both for x, y > O.

Proof Consider the function f(t) = (t cosh t)jsinh t for t > O. Then
1'(t) = (sinh t cosh t - t)jsinh2 t. Now let g(t) = sinh t cosh t - t. Then

1 We use this notation to denote a doubly infinite Toeplitz matrix in which a row may
be obtained from the preceding one by shifting all elements one column to the right.
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g(O) = 0 and g'(t) = 2 sinh2 t > 0 for t > O. Since get) = g(O) + f~ g'(s) ds
get) > 0 for t > O. Thus 1'(t) > 0 for t > 0 and so f is monotonically
strictly increasing for t > O. Hence fey) > f(x) for y > x, which implies
y sinh x cosh y > x sinh y cosh x. (ii) is proved analogously.

ProofofTheorem 1.2. By Theorem 1.1, D 2 is invertible iff Ij(d4 + 2d2 cos ()
is essentially bounded (for 0 < a < fl) iff d4 + 2d2 cos () 7"= 0 for all () iff
[d4 I > 2 I d2 I; and this can be seen as follows. Lemma 1.3 implies I d4 I = d4

and I d2 I = d2 • So I d4 I > 2 I d2 I iff

fll sinh al cosh al - al sinh fll cosh al > al sinh fll - fll sinh al

iff

f31(cosh fll + l)jsinh fll > al(cosh al + l)jsinh al for 0 < a < fl.
(1.5)

Now letf(t) = t(cosh t + l)jsinh t ..So1'(t) = (cosh t + 1)(sinh t - t)jsinh2 t,
and clearly 1'(t) > 0 for t > O. Thusfis monotonically strictly increasing for
t > 0 which yields the necessary inequality (1.5) for the invertibility of D 2 •

The second system of equations in (1.4) yields

(1.6)

and substitution into the first system gives

(1.7)

Before answering the question of the invertibility of the matrix in (1.7),
we make a diversion from the case of the double hyperbolic spline to the
associated case of the quintic spline (a = fl = 0) in which we show how to
invert the matrix, similar to the one in (1.7), which arises; the procedure
carries over to the matrix in (1.7) whenever it is invertible.

Utilizing the same technique as earlier in this section, we find for the
operator L = D3 on [Xj , Xj+l),

(
Xi+1 - X ) ( x - Xj) [I

SLI(X) = Yj I + Y5+1 I + M j - 6 (Xi+! - x)

+ ~l (Xi+! - X)3] + Mi+! [- i(x - Xj) + ~I (x - Xj)3]

[
713 I 3 1 ( )5]+ N j 360 (Xi+! - x) - 36 (Xi+! - x) + 1201 Xj+l - x

[
713 1)3 1 ( )5]+ NiH 360 (x - Xj) - 36 (x - Xi + 1201 x - Xi ,

(1.8)
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and there result, after some straightforward computations,
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(1/6)['" 0 1 4 1 0 ''']m - (12/360)[ .. · 0 7 16 7 0 ''']0 = a,
(1.9)

[... 0 -1 2 -1 0 ''']m + (12/6)['" 0 1 4 1 0 ''']0 = 0

as the equations of continuity of the first and third derivatives of S.d at Xj ,

j = 0, ±1, ±2,....
Using the same names, C1 , C2 , D1 , D 2 , for the matrices in (1.9) corre­

sponding to those in (1.4), we observe the following important fact in both
cases. Since D 2 is always of the form K1 [". 0 1 27] 1 0 "'J, 7] > 1, and C2 is
of the form K2['" 0 1 2v 1 0 ... J, although we claim nothing about the size
of v, we have

LEMMA 1.4. C2D"21 = D"21C2 .

Proof D2
1 = (1/2(7]2 - 1)1/2)[ ... 1-'2 I-' 1 I-' 1-'2 ...] (an application of

Theorem 1.1; see [2]), so

[... 0 I 2v 1 0 ...][... 1-'2 I-' 1 I-' 1-'2 ...]

= [... 1-'2(2vl-' + 1 + 1-'2) 1-'(2vl-' + 1 + 1-'2) (2vl-' + 1 + 1-'2)

2(v + 1-') (2vl-' + 1 + 1-'2) 1-'(2vl-' + 1 + 1-'2) 1-'2(2vl-' + 1 + 1-'2) ...J
= [... 1-'2 I-' 1 I-' 1-'2 ...][... 0 1 2v 1 0 ... ].

Therefore, Eq. (1.7) becomes

[C1 - D21C2D1]m = a. (LlO)

Now, because D2 is invertible, D2[C1 - D21C2D1J = D2C1 - C2D1 is
invertible iff [C1 - C2D"21Dl] is. So we left multiply Eq. (LlO) by D2 and
attempt to solve

(Lll)

(1.12)

and from (1.6)

(1.13)

We will show momentarily that [D2C1 - C2D1 ], when it exists, is of the form
K3[·"A2AIAA2·"]-K4[ ..·~2~1~~2 ... ], with -1 <A, ~<O; and,
therefore, by the same argument used to establish Lemma 1.4, it is clear that
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or

D2 commutes with [D2C1 - C2D1]-1, and D1 commutes with D;.I. Hence
(1.13) becomes

n = -D1D;ID2[D2C1 - C2D1]-l a = -D1[D2C1 - C2D1r 1a. (1.14)

We see from Eqs. (1.12) and (1.14) that it is only necessary to invert one
Toeplitz matrix in order to find m and n and thereby evaluate the quintic
or double hyperbolic splines on Rl. The existence of these splines, provided
[D2C1 - C2D 1 ] is invertible, becomes a question (as was the case in [2]) of
the choice of the interpolation data {y;} in such a manner that the necessary
sums represented in (1.12) and (1.14) for m and n converge.

Now we come to the crux of the matter, the invertibility of [D 2C1 - C2D 1 ].

In the quintic case (1.9), (1.11) becomes

{([2/36)['" 0 1 4 I 0 ... ][ 0 I 4 I 0 ... ]

+ (12/360)[··· 0 7 16 7 0 ][... 0 -I 2 -I 0 ''']}m

= (12/6)['" 0 1 4 I 0 "']a, (1.15)

(12/120)['" 0 1 26 66 26 1 0 ''']m = (12/6)[··' 0 1 4 1 0 "']a,
(1.16)

and so we define the function 4> as

4>(8) = ([2/120)(66 + 52 cos 8 + 2 cos 28)

= ([2/120)(66 + 52 cos 8 + 2(2 cos2 8 - 1» (1.17)

= (l2/30)(cos28 + 13 cos 8 + 16).

Again, to invert the matrix on the left-hand side of (1.16) we must calculate
the Fourier coefficients of IN(8). First note that 4>(8) =1= 0 for all 8 since

4>(8) = ~~ (cos 8 + 13 + ~105)1 /2 ) (cos 8 + 13 - ~105)1/2 ),

and «(13 ± (105)1/2)/2) > 1. Now, letting an be the Fourier coefficients of IN,
we find by a computation which we spare the reader, involving the evaluation
of coefficients by residues, that

-1 [(-r + (r 2 - 1)1/2)n (-s + (S2 - 1)1/2)n]
a_n = an = (105)1/2 (r2 _ 1)1/2 - (S2 _ 1)1/2 '

where r = «13 + (105)112)/2) and s = «13 - (105)1/2)/2), for n = 0, 1,2,....
So [D2C1 - C2D1]-1 is

-30 \ 1 1 I
[2(105)112 l(r2 _ 1)1/2 [... ,\2 ,\ 1 ,\ ,\2 ... ] - (S2 _ 1)1/2 [oo. ~2 ~ 1 ~ ~2 ... ]"

(1.18)
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where A = -r + (r 2 - 1)1/2 and l;; = -s + (S2 - 1)1/2. Equations (1.12)

and (1.14) then become

-5 \ 1
m = (105)1/2 l(r2 _ 1)1/2 [... ,\2(1 + 4i\ + i\2) '\(1 + 4'\ +,\2) (1 + 4'\ + ,\2)

2(2 +,\) (1 + 4 + ,\2) ,\(1 + 4'\ + ,\2) ,\2(1 + 4'\ + ,\2) ... ]

(S2 _1
1
)1/2 [... ~2(1 + 4~ + ~2) W + 4~ + ~2) (1 + 4~ + ~2)

2(2 + 0 (1 + 4~ + ~2) W + 4~ + ~2) ~2(1 + 4~ + ~2) .. ·]1 a,

and

-30 \ (1 -,\)
n = /2(105)1/2 /(r 2 _ 1)1/2 [... ,\2(,\ - 1) i\(i\ - 1) (,\ - 1) 2 (i\ - 1) i\(i\ - 1)

,\2(,\ - 1) ... ]

(1-~) ... 2 __
(S2 _ 1)1/2 [ ~ a 1) ~a 1) a-I) 2 (~- 1) ~(~ - 1)

~2(~ - ]) ... ]! a. (1.19)

We return now to the question of the invertibility of the matrix in (1.11).
First, we will show that the entries in the matrices in (1.4) converge to the
corresponding ones in (1.9) in the limit as ex, f3 -+ 0 for a suitable choice of
ex < f3. We have

LEMMA 1.5. Let ex = af3n for n ): 2,0 < a < 1, and let f3 -+ O. Then,for
Ci, di , i = 1,...,4, defined following (1.3), we have

lim C1 = ]/6, lim C3 = 2/3, lim C2 = -7/2/360, lim C4 = -]612/360,
/l-->O /l-->O /l-->O /l-->O

lim d1 = -1, lim d3 = 2, lim d2 = /2/6 lim d4 = 212/3.
{3-->O {3-->O {3-->O ' {3-->O

Proof For small f3, from the definition of C1 and the Taylor expansion of
sinh x for small x, we have

C1 = (a2f32nfl2/2(f32 - a2f32n)(afln/ + .. .)(fl/ + ...))-1

[ (
a3f33nf3 )( [13f3 ). (fl4 - a4fl4n) afln/ + -3-'- + ... f3/ + 3T + ...

_ afln/fl4 (fl/ + ~~3 + ...) + a4fl4nfl/ (afln/ + a3~3!n/3 + .. -)]



182 ALAN M. BAUM

[ (
a3f33np ) ( f33/3

= (a3f33n+5/4 + ...) -1 f34 3! + ... f3/ + 3T + ...)

1 + 0(f3) 1
6 + 0(f3) -+ 6 ' as f3 -+ 0,

where .,. indicates lower order terms. The other terms are handled similarly.
A similar argument holds if n = 1, i.e., if ex = af3,O < a < 1, as {J -+ O. In
that case, the dominant term in the denominator has a factor of f32 - a2f32n =
f32(1 - a2), and in the numerator, terms involving f35n+3 are of the same
order (fJ8) as fJ3n+5 and combine to give an identical factor of (1 - a2). So
we have the required convergence for ex = af3n, 0 < a < 1, n ;;:, 1, as f3 -+ O.

It follows from the above that the entries in the matrix D2C1 - C2D1 in
Eq. (Lll) converge to those in (Ll5). Since there is only a finite number of
nonzero entries in any row (and all the rows are identical except for a shift),
we may conclude that, for sufficiently small {J, the matrix in (1.11) is invertible
by virtue of the following argument.

Let E be the Banach space of all bounded doubly infinite sequences of
reals with sup norm; i.e., E = {x = (... , X-2 , X-l , Xo , Xl , X 2 , ••.): 1\ x II =
SUP_oo<i<oo I Xi I < oo}. Then the matrix D2C1 - C2Dl of (Ll5) or (1.16) is a
bounded linear operator, in the induced operator norm, mapping E to E.
Call this operator T. It is clear that T is linear and that it is bounded follows
from the fact that

II Tx II = -~~E:oo I(Tx)i I = -~~E:oo I eOXi + '~1 en(xi+n + Xi-n) I

where T = [... 0 e2 e1 eo el e2 0 ... ]. Similarly, T is the bounded linear
operator defined by D 2Cl ~ C2D l of (1.11). We have the well-known [3]

THEOREM 1.6. If T is a bounded linear operator from E to E having a
bounded linear inverse T-\ then any bounded linear operator t satisfying
II T - til < II T-1 11-1 has a bounded linear inverse T-1 satisfying

II t-l - T-1 II :S; II T-1 11 2 II T ~ t 11/(1 - II T - Til' II T-1 ID·
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Since, by the choice of (x, f3 we make II T - t II arbitrarily small, it follows
that the matrix in (1.11) is invertible for such values of (x, f3, and that t-1 is
close to T-l as measured in the induced operator norm, which is, in fact,
the row-max norm. (For any bounded linear operator on E, not just a
symmetric Toeplitz matrix, the bound B on the norm of the operator,
obtained in a manner similar to that on the preceding page, can be reached
by an appropriate choice of the sequence x, having values ± 1; therefore, the
norm of such an operator is, in fact, B = sUP_oo<i<oo r;:-oo I eij I, the sup
of the sums of the absolute values of the entries on each row.)

It is also true that the coefficients of the unknowns in representation (1.2)
converge to the corresponding ones in representation (1.8) as (x, f3 -.. O. We
see this in

LEMMA 1.7. The coefficients of M j , Mj+l' N j , Nj+l in (1.2) converge,
respectively, to those in (1.8) if ex = af3n, n ;;;, 2,0 < a < 1, and f3 -.. O.

Proof Consider the coefficient of M j in (1.2), call it z. Then for small f3,

z = (a2f32nf32(f32 - a2f32n)(af3nl + ···)(f3l + ...))-1

. [_(f34 - a4f34n) (af3nl + a3~3!n[3 + "')(f3l + f3;;3 + ...)( XHl
l
- X)

+ f34 (f3l + f3;;3 + ...)(af3n(Xi+1 _ x) + a3f33n(x3+t - x)3 + ...)

- a4f34n (af3nl + a3~3!n[3 + "')(f3(XH1 _ x) + f33(Xj+~!- X)3 + ...)J

• [( f33l3 ) ( a3.Q3n= (a3f33n+ol2 + ...)-1 f34 fil + 3T + ... -{-,- ((Xj+l - X)3

a5f35n
- l2(Xj+l - x)) + -----s! ((Xj+l - X)5 - l4(Xj+l - x)) + ...)

+ a4fi4n (afinl + a3~~n[3 + ...)( ~; (l2(Xj+l - x) - (Xj+l _ X)3)

f35+ 51 (l4(Xj+l - x) - (Xj+1 - X)5) + ...)]

(
a3f33n+5l

= (a3f33n+5l2 + ...)-1 3! ((Xi+l - X)3 - l2(Xi+l ~ x)) + ...)
l 1

-.. - "6 (Xj+1 - x) + 6l (Xj+l - X)3, as f3 ----+ O.

Again, the other coefficients are handled similarlY, and, in this case too, the
results hold even for n = 1.
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Lemmas 1.5 and 1.7 and Theorem 1.6 allow us to establish the following

THEOREM 1.8. For ex = a(3n, 0 < a < 1, n ~ 1, the double hyperbolic
spline on R1 converges to the quintic spline on R1 in the limit as (3 ---+ O.

Proof Equations (1.11) and (1.15) take the form

and

respectively. Therefore,

II iii - mil = 11(1-1152 - T-1D2)a II

= II(t-1152 - t-1D2 + t-1D2 - T-1D2)a II

~ (I[ 1-1 II . 11152 - D 2 11 + II D 2 11 . II 1-1 - T-1 II) II aII,

which shows that iii converges to m, and a similar argument shows that ii
converges to n, as (3 ---+ O. Thus, the double hyperbolic spline defined by (1.2)
must converge to the quintic spline defined by (1.8) as (3 ---+ O.

For the double hyperbolic spline, the invertibility of [D2C1 - C2D1 ] is
equivalent to the essential boundedness of II ep, where

ep(8) = (d4cS - C4dS) + 2((d4C1 - cA) + (d2cS - c2ds))

. cos 8 + 4(d2c1 - c2d1) cos2 8.

It is, therefore, equivalent to the statement "the equation

[exSl(sinh (31 - (31) - ,8s1(sinh exl - exl)] x2 (1.20)

- [ex31(sinh (31(1 + cosh exT) - (31(cosh exl + cosh (31))

-(331(sinh exl(l + cosh,8l) - exl(cosh exl + cosh (31))]x

+ [exsi cosh ex/(sinh ,81 - ,81 cosh (31) - ,831 cosh (31(sinh exl - exl cosh ex/)] = 0

has no real roots with magnitude less than or equal to 1." A simple computer
program devised to test this for arbitrary 0 < ex < ,8, I > 0, lends credence
to the fact that [D2C1 - C2D1] is, in fact, invertible for all such ex, (3, although
a rigorous proof escapes the author.

2. HIGHER-ORDER GENERALIZED SPLINES ON R1

Having seen how the procedure of using several unknown spline derivatives
in the representation of a spline works for the double hyperbolic and quintic
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splines on Rl in the previous section, we now investigate the technique for
higher-order cases. We consider linear differential operators of the form

(2.1)

for 0 < a l < a2 < ... < an' A generalized spline satisfying L*LS.1 = 0
on the mesh intervals can be written

n

S.1(x) = co; + cl;x + L (a/ sinh aix + hii cosh aix) (2.2)
i=l

on [x" XHl]. Using the known interpolation data y" Yi+1 and the 2n
unknowns, Ml, M7+l , Ml, M;+l ,... , Min, Mf±l , representing, respectively,
S~(Xi)' S~(Xi+1)' S~IV)(Xi)' S~IV)(Xi+1)"'" S~2n)(Xi)' s~n)(Xi+1)' we have a system
of 2n + 2 equations for the 2n + 2 unknown coefficients coi, Cl i, {a/}f=l,
{bl}f~l:

1 Xi sinhalXi coshalXi sinhanxi coshanx,

I x'+1 sinhalxHl coshalxi+! sinhanxi+l coshanXi+l
0 0 a12sinhalx, a12coshalx, an2sinhanxi an2coshanXi
0 0 ['t12sinhaIxHI al2coshalXi+1 an2sinhanxHI an2coshanXHI C=U,

0 0 ainsinhalXi aincoshalXi a~nsinhanxi a~ncOShCXnXi

0 0 ainsinhcxIxHI aincoshcxlXHI cx~nsinhcxnxHI cx~ncoshanxi+1

(2.3)

where c = [coi, el ', ali, hIi , ... , ani, bniY and u = [Yi , Y'+l , Ml, M7+1 ,... ,
Min, Mj+lY'

Dividing the matrix in (2.3) into 2 X 2 block submatrices, it is easy to see
it is of the form

where

[

(AO)
(0)
(0)

(0)

(AI)
CX I

2(Al )

CX I
4(A I )

(An) ]cxn2(An)

CXn4~An) ,

cx~n(An)

(2.4)

(Ao)= [~ x~~J
and

(A.) = [ sinh CXiXi cosh aixi ]
• sinh aixi+! cosh CXiXi+! '

(0) = [~ ~].

i = 1,... ,11,
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The matrix (2.4) can be factored as

where

l

(I) (I)
(0) (X12(I)

(b) (X~~(l)

(I) ll(AO).. , (Xn2(I) (0)

.. . (X~~(I) (0)

(I) = [~ ~l

(0)

(0) 1(0)

cL) , (2.5)

Now, the matrix on the right in (2.5) is invertible iff A o , AI,"" An are. Since
Xj+l > Xj, A o is invertible, and since det(A i ) = cosh (XiXj+l sinh (XiXj ­

sinh (XiXj+l cosh (XiXj = -sinh (Xii =1= 0, AI,"" An are invertible. Thus,
we have reduced the question of the invertibility of the matrix in (2.3) to the
invertibility of the left/matrix of (2.5). We have

THEOREM 2.1. The generalized Vandermonde determinant

(I) (1)
Ail) Al(I)

(1)
An(1)

Ann(I)

= !TI>. (Ai - Aj )12.
, 1

(2.6)

The proof of this is an easy generalization of the standard proof for
Vandermonde determinants.

By our assumption °< (Xl < ... < (Xn, we have that 0, (X12, ... , (Xn2 are
distinct and, therefore, it follows directly from Theorem 2.1 that the matrix
on the left in (2.5) is invertible. It is this fact which ensures the validity of the
representation of SiJ in terms of Yj , Yj+l , {M/, M;+l}~l for any operator of
the form (2.1), and is the basis for this entire algebraic approach to generalized
splines through the use of multiple unknowns.

To find the M/'s and thus specify the spline completely, we attempt to
solve the system of equations resulting from the continuity conditions on
SiJ', S;, ... , s~2n-l) at each Xj . This system is

Cllml + C12m2+ ... + Clnmn = a

Clml + C22m2+ ." + C2
nmn = 0· ..· .· .

Cnlml + C n2m 2 + ... + cnnmn = 0

where mi = [..., M~l' Moi, Mli, ... )T, i = I,... , n, a is as in Section
each C/ is a tri-diagonal, symmetric, doubly infinite Toeplitz matrix.

(2.7)

and
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For example, septic splines, which are useful in applications, arise from the
operator L = D4, and although (2.2) becomes a linear combination of
1, X, x 2, ••• , x 7, we still get the following system of equations for the unknowns
M/ = S~(Xj), Ml = SHV)(xj), Ml = S~Vi)(Xj), which we use to represent SLI

(1/3!)[·· 0 1 4 1 0 "']ml - (12/3 X 5!)[··· 0 7 16 7 0 "']m2

+ ([2/3 x 7!)(··· 0 31 64 31 0 ] m3 = a,

[... 0 -I 2 -I 0 ...] ml - (/2/3!)['" 0 I 4 I 0 ] m2 (2.8)

+ (14/3 x 5!)['" 0 7 167 0 ···]m3 = 0,

[... 0 -I 2 -10 ···]m2 +(l2/3!)[··· 0 I 4 I 0 ,··]m3 =0.

As before, the procedure for solving (2.8) is substitution. We solve the last
equation for m3 in terms of m2 and substitute the result into the second
equation, which we then solve for m2 in terms of ml and use both of these in
the first equation. For polynomial splines, the first two equations always
involve all the unknowns and succeeding equations involve one fewer
unknown at each step until the last equation involves only the two unknowns
mn, mn

-
I

• For multiple hyperbolic splines this disappearance from succeeding
equations does not occur; the substitution procedure is still carried out,
however.

It is instructive, at this point, to mention, at least briefly, the technique of
Schoenberg for calculating polynomial splines on RI. He writes [4] a
polynomial spline (of odd degree k - I) on the uniform mesh {O, ±I, ±2,...}
in the form

SLI(X) = L CjQk(X - j),
j=~a:.,

where

Qk(X) = (l/(k - I)!) i~ (_I)i (~) (x - i)~-I

and

=0

if x;;O: 0,

if x < 0.

Qk vanishes outsides (0, k), so the sum in the expression for SLI creates no
problems.

The calculation of the coefficients Cj for given interpolation data {Yj}
involves a process identical to that of inverting the Toeplitz matrices which
arise by our technique. To evaluate the spline explicitly, it is necessary to
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calculate the function Qk(X) = Mix - k/2) (see [4]). The major dis­
advantages to this approach are its apparent confinement to polynomial
splines (it is not at all clear to this author, what, if anything, corresponding
to Qk, can be constructed for generalized splines; although let it not be
assumed that Schoenberg makes any such claims for its extensibility) and the
restriction to interpolation data satisfying II LJky lip < 00 where II . lip is the
usual norm for Ip (1 ,;;; p ,;;; 00),

and

(

00 )l /P
II x lip = iJ;oo I Xi IP

II x II", = sup I Xi I·
i

if 1';;; p ,;;; 00,

The applicability of our approach to other types of constant coefficient
differential operators L, such as those with irreducible quadratic factors
(over the reals) or with repeated factors, is expected to be much the same.
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